

Q.1

A 2 kg stone tied at the end of a string of 1 m length, is whirled along a vertical circle at a constant speed of 4 ms^{-1} . The tension in the string has a value of 52 N when the stone is

- At the top of the circle
- Half way down
- At the bottom of the circle
- None of the above

Q.2

A stone tied to a string is rotated in a vertical circle. The minimum speed with which the string has to be rotated

- Decreases with increasing mass of the stone
- Is independent of the mass of the stone
- Decreases with increasing in length of the string
- Is independent of the length of the string

Q.3

A stone tied to a string rotated with uniform speed in a vertical plane. If the mass of the stone is m , length of the string is r and the speed of the stone is v , the tension in the string when the stone is at its lowest point is (g = acceleration due to gravity)

$$(1) mg \quad (2) \frac{mv^2}{r} \quad (3) \frac{mv^2}{r} - mg \quad (4) \frac{mv^2}{r} + mg$$

Q.4

A bucket filled with water is tied to a rope of length 0.5 m and is rotated in a circular path in vertical plane. The least velocity it should have at the lowest point of circle so that water does not spill is, ($g = 10 \text{ ms}^{-2}$)

$$(1) \sqrt{5} \text{ ms}^{-1} \quad (2) \sqrt{10} \text{ ms}^{-1} \\ (3) 5 \text{ ms}^{-1} \quad (4) 2\sqrt{5} \text{ ms}^{-1}$$

Q.5

Aircraft Pilot has a weighing machine installed on the seat of the chair. The aircraft goes in a vertical circular loop with a constant speed. He finds that at the bottom of the loop he registers a weight of 7200 N. Weight of pilot is 80 kg. the radius of the loop is 250 m. Determine the speed of the aircraft.

$$(1) 150 \text{ m/s} \quad (2) 50\sqrt{10} \\ (3) 100\sqrt{2} \text{ m/s} \quad (4) 100 \text{ m/s}$$

Q.6

The minimum speed for a particle at the lowest point of a vertical circle of radius R , to describe the circle is v . If the radius of circle is reduced to one-fourth its value, the corresponding minimum speed will be

$$(1) \frac{v}{4} \quad (2) \frac{v}{2} \quad (3) 2v \quad (4) 4v$$

Q.7

A small stone of mass 100 g is whirled in a vertical circle of radius 1 m with maximum speed of 4 ms^{-1} . The tension in the string is

Q.8

(1) 10 N
As the string is not broken, the tension is maximum when the stone is at the top of the circle.

Q.9

(1) 10 ms^{-1}
In the lowest point, the tension is maximum.

Q.10

(1) 10 ms^{-1}
At the lowest point, the tension is maximum.

(1)